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The problem of estimating parameters of state of a distributed parabolic system
by observation results is considered, The system is assumed to function under
conditions of undefined perturbations in the measurement channel and specified
initial distribution, The problem is considered in minimax formulation [1] in
conformity with the scheme accepted for ordinary differential equations [2].(*),
Analytic definition of sets X (9, y (-)) (& > 0) of states of a parabolic system
compatible at instant ¥ with the realizable signal y (¢) (t = [0, 9])is obtained,
An element of region X (8, y (-)) which satisfies the specified minimax crit-
erion is chosen as the optimal estimate of the true state at instant ¢ ., Integro-
differential equations in partial derivatives are derived for parameters that def-
ine the evolution of regions X (¥, y (-)) in time, One of the methods of approx-
imating the input problem of observation by similar problems for systems of or-
dinary differential equations is discussed on a specific example, Problems of
observation for distributed systems in different formulations appear in [3— 6],

], Statement of the problem of a posteriori ob-~
servation, Letsome bounded region D with boundary S consisting of a finite
number of (n— 1)-dimensional hypersurfaces of class C® (D) (C? (D) is the set of
all functions §pecified in D which have p continuous derivatives) be specified in the

n -dimensional Euclidean space R™. We consider in region D a system defined by
the initial boundary value problem for the equation in partial derivatives of the para-
bolic type

ou (t, x)
at

a®ut, b+ —a@) 2L o
11_151 lut, @) —uo (@) ||, py=0r o ()& La(D)

:Au(t, x)—q(x)u(t, 1:) (1.1)

a? o2
(x =col [zy,...,z,] &= D, A:W—{—”M{—W)

where ¢ is the time, £ > 0; g (z) is a function continuous according to Holder in

*) See A, B, Kurzhanskii and In, S, Osipov, Control and estimation problems in syst-
ems with distributed parameters, Preprints International Federation of Automatic Con-
tron, 6-th Triennial World Congress, Boston, 1975, Pittsburg, Pa., Instrument Society
of America, 1975,
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Minimax mean square filtration in parabolic systems 1113

the compact region D, = D |J S;E & §,v is the external normal to surface
§ atpoint &, and o (§) is a function of class C? (§) that satisfies condition
I<a(@®) <1t

Let the signal ¥ (f) accessible to measurement on segment [0, &) (& > 0)
be representable in the form

y(t) = §x(x)u(£, D dz + 0 2@ & L™(D), nBeL™(0, 9 (12

where % (z) is a known function; 7 (f) is the error in the measurement channel,
and L,™ (D)(L,™ (0, ®)) is the transposed product of m spaces L, (D) (L, (0, 9)).
Hence y (f) isan m -dimensional function from L,™ (0, ).

Using the information provided by (1. 2) we have to determine the true state of
system (1, 1) at instant & , on the assumption that the initial state u, () and funct-
ion 1 () are not a priori known, but the condition

o
B (uo @ M (D uo () dz + v {0 ) N (e <2 (1.3)

which defines the region of their admissible values is specified, In this formula B, v,
and j are some positive constants , M (z)is a positive continuous in D, function,
and N (f) is a continuous m X m matrix positive definite for each ¢ & [0, 4] ,
with the prime denoting transpostion,
Definition 1. (See[2], Sect. 13). The set of those and only those states
w (®, ) ofsystem (1. 1) for each of which can be found functions %, () and
1 (¢) that satisfy relations (1.1) —(1, 3) is called the information region X (&, y (-))
of states compatible with the obtained signal ¥ (t) (¢ & 10, 91).
Definition 2, We call function ¢ (&, x) that satisfies the criterion

&= nﬁx} z2(:)—c(® - )= I:‘(%”E‘?? v () —2() L, o (L4
z(hv()eEX® ()

the optimal estimate of the true state of system (1. 1) at instant ¢ under conditions
(1.2) and (1. 3).

The determination of set X (&, ¥ (+)), and function ¢ (¥, z) is the object of
the problem of a posteriori observation [2].

Existence of the unique solution of problem (1. 1) was shown in [6,7] and to beofthe
form

u(t,d) = SU Gz pue@dy, 0Kt<+o, z&Dr (L9
D

where U (t, z, y) (¢ > 0; =z, y= D,) is the fundamental solution of system (1, 1)
that belongs to class (! with respectto ¥, to C? withrespectto z, andto y
from D,.

We denote by {— A, @; (z), i =1, 2, 3, ...} the totality of eigenvalues and
eigenfunctions of the elliptic operator in the right-hand side of Eq. (1.1) (with boundary
condition in (1, 1) satisfied ). Then
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a) limA; = + 00, A;>ming(x), i=1,2,3,...,

i—>00 xe&Dy

b) {e; (z),i =1, 2,3, ...} is the complete orthonormal system in L, (D)
) Ult,z,9) = N e o) wi(y)
=1

where the series in the right-hand side uniformly converges on the arbitray set [8,

00) X Dl XD]_, 6> 0;

O Uz 0hy)dy = 3 ™ o (2)
D 1=

Vh(z) Lo (D), h(z) = gl haw; ()

and the series uniformly converges on the arbitrary set [§, o) X D;, 6 > 0.
Note that formula (1. 5) and the last property imply the inclusion u (¢, ) & L,
(0, Ty X D) forany T > 0.

2, Solution of the problem of a posterfori observat-
ion, We use the general procedure described in [2] and, first, define in space L, (D)
the region X (O, y(-)) in terms of appropriate support functionals, then, starting
from condition (1. 4), determine the sought function ¢ (9, z).

We rewrite formulas (1.2) and (1. 5) in the form

u@,-) = Tuy(z), T:L; (D)— L, (D)
y()=Tue(-)+n (), To: Ly (D)= L, (0, 9)

1t is clear from Sect. 1 that the operators 7' and 7'y are linear and continuous,

We introduce the notation 7, = T X O and T, = Ty X E (E and O are,
respectively, the identical and tt:e zero operators on L,™ (0,9)), z (-) = {u, (+),
1 (+)}. The constraints (1. 3) can now be represented in the form of inclusion z (-)
e 0.

The definition of set X (O, y (+)) implies that the element u (¥,-) & X (9,
y (+)) then and only then when the following system of operator equations is
compatible:

u@)="Tz()y()=Tz()z2()=0

or, what is the same, when,by Theorem 3, 1 in [2], the inequality

min KT3*1(-) + T*A (1), 2 (D [2 () €0} — A (), (2.1)
yOeN <), u@, )
is satisfied for any I (z)& L, (D), A(t)& L™+ (0, 9). In this inequality < (+),
(+)> denotes the scalar product in the respecitve Hilbert spaces and the asterisk denot-
es a conjugate operator.
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Having determined the minimum (see [2], Sect. 13), from (2. 1) for the supporting
functional of set X (&, ¥ (+)) we obtain formula

e (2.2)
P X@ (M= inf [ reyedtam-

S (IJEL (0,0 o

ki
2&;’(@, M () dt + ggk'(t)K{t, z)xm dtdr +
1

v§ N ONOM at]’ 1

(@) =g \\\ M T @ 5 1@ 3,91 () dndedy

L

1,8 =g \\\U @ 2 D1 M )% (0 (@ . 9) dndzdy

K= "ff—z' §§§“ (@ MU ¢ 2, ) M) (v, n, y) dndedy

Let us consider matrix K (£, T) in more detail, Taking into account formulas
(1.5) and (1.1), it is possible to show that this matrix is symmetric with respect to ¢
and T, semipositive definite (by construction), and continuous over the totality of
variables in region [0, 8] X [0, 8] for arbitrary positive €.

We set

LiX:
Chr()s ha(+)dg = Sghx’(t)l((t,r)hg('c)dtdt—l—

g
=\ ONTO bt
Vkl (;)1 h2 (t) S= Lzm (0’ ﬁ)

and consider the following system of Fredholm integral equations of the second kind with
a nonnegative kernel (which has a unique solution in L,™ (0, 9)) [8,9]:

i
S K (i, 1)d (’ﬁ', tTidt 4 ..s.g_. N-1 (g} d (ﬁ, t) = f(§’ £) {2.3)

K, 1) y* (% vdr+3 SN0y (00 =y )

G P @

The argument & in functions d (&, ) and y * (¥, f) implies that Egs. (2.3)
are considered on segment [0, €1,
The right-hand side of formula (2. 2) can now be expressed in the form

pUMIX @, y( M= inf  {ACH YO, D+ (2.4

A(ela™ (o, 0)
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RIA()—d (B, ) A(-)— (@ )dg + &2 (7
g2 (ﬁ) = a? ('&) - <d (ﬁ7 ')9 d(ﬁ: )>K
where g2 %) > 0, since (by definition) the radicand in (2, 4) is determinate for any
function A (¢) from L,™ (0, 0).
Calculation of the lower bound in (2, 4) (see [2], Section 13) yields

0 (L) X (0, y() =g @@ —<y* @), y* &N+ (29
<y* (ﬁy')’ d(ﬁ7')>K

Remark 1., Letusset

1
10,6 5= 55 \\0 @ 5 M@ x0T D andy
DD
Then
180 = (1)1, 1, 5z
D

The properties a), b) and ¢) defined in Sect, 1 imply that function j(b, ¢, 2) is
continuous over the totality of variables in any arbitrary region [, o) X [0, #] X Dy,
6>0.

Let d (%, t, ) be a solution which differs from that of the first of Eqs. (2.3) by
that in the right-hand side it contains f (%, ¢, ) instead of j(&, ) . This equation
has also a unique solution for any z € D;. Note now that

d(8, 1) = Xl(z)d(ﬂ, t, 7)dz
b
(using the respective properties of solutions of the indicated type [8, 9] it can be shown
that the above integral exists).
Using the notation
9
B2 (8) = <y* (9, <), y* (0, g = Sy’ (t)y* (0, t)dt (2.6)

0

P, 9) = \U (&2, ) M) U (8, 3, m)dn —

D
L

(2@ Lo

° i L
c@2) = £ (@1, 2)y*@ 0d = d® 2y d =
<y* (ﬁ’ ')’ d(ﬁv ) x)>K

from formula (2, 5) we obtain

P(l(‘ﬂx(ﬁ,y(')))={glgl(x)P(ﬁ,x,y)l(y)dzdy}‘/'(pz_ (2.7
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w @)+ (1@ e, 0)dz
b

As shown in [10], the set with the supporting functional (2. 7)isan ellipsoid(defined
in space L, (D) by the related scalar product) whose center is at point ¢ (&,°).

Thus the following statement is valid,

Theorem 1. The information region X (&, y (-)) of states of system (1. 1)
that is compatible with the realized signal y (¢) (¢t & [0, 9]) with restraint ( 1.3)
is an ellipsoid, possibly degenerate, with supporting functional (2, 7) and center at
point ¢ (&, ) defined by the last of formulas (2. 6).

Let us consider the geometrical meaning of the derived solution of the a posteriori
observation,

Let the obtained signal ¥ (f) generated by the pair of functions

up(2) = D} aywx (), n(t)

k=1
be such that (see (1. 2))
yO=0@+n0. e0= ¢ ¥oau (x@)= N hor@) (&
k=1 k=1

We denote by L the set of all functions from L™ (0,9) of the form ¢ () such
that it is possible to determine on the basis of function u, (z) some function 1 (f) and
a pair {uy (x), m (1)} which satisfy conditions (2, 8) and (1,3). Let L, be the comple-
mentof L to L™(0,9). Formula (2. 8) can then be expressed in the form

yO =y Fn@®, pn=9@+n@®sl
nAl=m@®el, n@=1+n@

The statement is proved (cf, [2], Sect. 11),

Theorem 2, 1°, The optimal estimate of the true state of system (1, 1) at
instant ® with conditions (1.2) and (1.3) is the center of ellipsoid X (&, y (+)) ,
function ¢ (&, x) defined by the last of formulas (2. 6).

Let us consider the set of signals ¥y () = 1 () + R Q) O L, 4, ()
L,) generated in conformity with (1.1) —(1.,3) with fixed first component y, (f).

2°, If the second component of the signal, i.e. function ¥, (f) from L, is zero,
the information region X (&, y (+)) reaches its maximum dimension (which is most
unfavorable for the observer, since the estimate error is then maximal).

3°, In the most favorable case for the observer ellipsoid X (0, y (+)) may de-
generate into a point, Functions u (z) and 7 (f) that have generated y (2)
then satisfy constraint (1. 3) with the equality sign.

3, Equations of maximum filtration, We passto the investi-
gation of dynamics of information regions X (¢, y (-)) using Theorems 1 and 2,
We adduce the derivation of differential equations for functions ¢ (&, ), P (&, =, ¥),
and h* (§) the dynamics of whose variation determines the evolution of regions
X (8, y (). For this we carry a number of transformations whose admissibility will
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be substantiated below,
We introduce the auxilliary function B (0, z, y) defined by formula

B(®,z,y)=<d®-,2),d®,, y)dk (3.1

Then, differentiating function B (¥, x, y) with respect to § and taking into
account formulas(3,1) and (1,5), Remark 1, and also the equlities

Lid °
(r@, )a@, 1, 2)d = ({106, 9% (@d(0,t, 2)dzdt =
0 oD

fgn(y)Bw, z, ) dy

we obtain for function B (¥, z, ) the problem

B (g{,}z, V) — AB(®, z,y) — [q (&) + W1 B (B, z, y) + (3.2

v 10,9, 2)— (@) B®, = vdy] N®) [7(0, 9,5 —
D
§u () B (®, z,9) dx]
>0, z,yeED
a®B @, 28+ —e@)

a(8) B (9, a,y>+(1—a<§»ﬂ“’—?’—”’- 0, E=S
Ll_’mo | B (¥ 2, 9) |, oxpy = 0

aB (’& z, i) 0’ EES

From the second of formulas (2, 6) follows that

P@®,z,9) = SU(ﬁ z, HMAMU (B, y, Ndn—B(® 3 (3.3

Hence function P (¥, x, y) satisfies the following initial boundary value problem:
aP (9, z,
P29 _AP(®,2,9) —(g(2) + ¢ @) P (® =, ) — (3.4)

72SSx’(n)P(ﬁ,x,n)N(ﬁ)P(ﬂ,y,z)u(z)dndz, $>6>0

b
z,yesD

a®P@® &y + (1 —a@ERuW o res

«®P®, 2,8+ —a@®) &8 o, tes
P(ﬁ‘1 z, y) |9=0 = P((Sr x, y)
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where § is an arbitrary positive number and P (§, z, y) is determined by formula
(2.6).
Problems for functions ¢ (&, x) and A2 (§) are similarly derived

ac(;)g D — Ac(®, 2) — g () ¢ (3, x) + ¥ [y(ﬁ) — § ¢ (9, 2)% (z) dx]' (3.5)

NO 1002 («@B@zyd], 0>0 s=D

a@®c® 8+t —a@)ZEE o, tes
E_.n; lle(®, x) ”L,(D) =0
éfg_%i)_ =Ac(®, z) — q(z)c (9, 2) + y? (y(ﬁ)_ S c(ﬁ’x)X(x)dx)l (3.6)
D
N(ﬁ)S%(y)P(ﬂ,x,y)dy, 4>8>0, z&D
b

a®c® 8+ —a@LE o, tes
(B, z)[p_y = (0, )

912 ()

= [3®— (x@ee, 2)dz] N () [y(0) — 3.7

D

&
L&) % (z) ¢ (B, x) dx]

Theorem 3, Functions ¢ (%, z), P (8, z, y), and % (§) are solutions
of problems {3, 6), (3.4) and (3.7).

Remark 2, Function ¢ (&, x) can be also determined as the solution of prob -
lem(3.5) in which B (&, z, y) is the solution of problem (3.2). FunctionsB (&, x, y)
and P (8, z, y) are linked by relationship (3. 3).

The validity of above calculations can be substantiated by the corresponding solut-
ions of Fredholm integral equations (2, 3) of the second kind [8,9]. It can also be
shown that functions ( (&, z), P {8, z, y), B (8, z, ¥), and A% () are continuous
over the totality of variables for ¢ >0, with z, y & D, , and have continu-
ous derivatives 9% (O, x)/dz,®, 9*P (0, x, y)/ox?| %P (%, z, y)/dy;®, OP (U,
z, Y)/0®, *B (B, z, y)/dxs?, B (0, z, y)/oy?, 8 B (&, z, y)/od & > 0;
z,yeDy, 1=1,2, ., M). Functions ¢ (&, z) and h® () are differen—
tiable with respect to @ for almost all & > 0.

Using the investigations in [11] it is possible to show the unique solvability of the
initial boundary value problems (3, 6) and (3.4) in the considered class of functions.

4, The problem of approximation, Letus investigate on a
specific example one of the possible method of approximating the a posteriori observa-
tion input problem (1.1) —(1.4), using similar problems for certain systems of ordinary
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differential equations whose solutions are well known.
Let us consider the problem defined by the Dirichlet problem for the heat conduct-
ion equation
ou (t, x) 2u (2, )
ot = 322 , JE(O, 1), t>0
u(t,0)=u(t,1)=0, u(tz)l_,=uo(z)EL(0,1)

(4.1)

We assume for definiteness that M (x) =1 and N (1) is a unit m X m matrix.
In this case constraint (1. 3) is of the form

1 ¢
ﬁBS u()2 (I) dz + 'Y2 S -nl (t) 1 (t) dt < pg (4. 2)
0 0

As the approximating sequence for problems (4. 1), (1.2), and (4.2) we consider
the following set of a posteriori observation problems (see footnote on p, 1112). For
the system

du," 1
5 =7 2" ) “.9)
dui" 1 " .
= T Wy — 2t uly), =201
du ™ 1
%=—h?(u:*1— 2u,™), t>0
) 1
"in(0)=“3i- i=1,...,n (h= m)
and the equation of measurement
yO =@+ &), t<=(0,0] 4.9

we have to define in space R" the information region X, (&, y (-)) of states of
system (4, 3) compatible with signal y (¢) (¢t < [0, B]) y l.e, theset of those and only
those vectors u™ (#) ='R™ for each of which can be found a pair ", § (#) that
satisfies formulas (4, 3) and (4. 4) with condition

0
PR Hug + 7 S E()E()dt <p2+ ey £ >0 (4.5)
0

The term G" in (4.4) represents an n X m matrix with elements

h(i+1)
g = S w;(2)de, 1=0,...,n—1, j=1...,m
hi
uo™ = col [up™, . . -, upn™l, H"™=diag{h, ..., h}
% (z) == col [%; (), . - ., %m (2)]

Note that function y (¢)appearing in(4.4) is one and the same for all » and represents
precisely the signal that was realised at the output of system (4, 1) by virtue of (1, 2).
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The admissibility of such formulation of problems{4.3)—(4. 5) is validated by the add-
ition to the right-hand side of inequality (4. 5) of the positive arbitrary selected num-
ber & .

By solving problems (4. 3) —(4. 5) (see [2], Sect, 13) we obtain the sequence of
functions hn? (8), P" (8) and " (8) which serve as parameters of corresponding in-
formation regions Xna (8, ¥ (*))-

We introduce the notation

a(#), 0<<z<h
" (¢ z)= cin 9, —19) hZz ik (4,6)
0, nh<lz<1

and denote by P" (, z, ) the function derived with the use of the » X n matrix
P (§) in a way similar to (4,€). The following theorem on approximation is valid,
Theorem 4, Let %;(z)  =1,..., m) be functions bounded on segment
{0, 1] (¢ (x) = L,™ (0,1)). Then for n — oo functions ¢* (8, z), P* (®, 2, y) and
ha? (8) uniformly converge, respectively, to functions ¢ (&, 2),P (8,2, 3) and
B2 (0) for # =16,T] and =2,y <[0,1] , where & and T are arbitrary positive
numbers,

The author thanks A, B, Kurzhanskii for formulating this problem and valuable
remarks.
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